Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 569
Filtrar
1.
J Pharm Biomed Anal ; 243: 116082, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38461636

RESUMEN

BACKGROUND: Venlafaxine (VEN) and its O-demethylated metabolite, O-desmethylvenlafaxine (ODV), are commonly prescribed serotonin-norepinephrine reuptake inhibitors, approved for the treatment of depression and anxiety. Both are metabolized to inactive metabolites via cytochrome P450 enzymes. While previous studies have focused on quantifying VEN and ODV, bioanalytical methods for the simultaneous measurement of all metabolites are needed to fully characterize the pharmacology of VEN and ODV. METHODS: K2EDTA plasma was spiked with VEN, ODV, N-desmethylvenlafaxine (NDV), N,O-didesmethylvenlafaxine (NODDV), and N,N-didesmethylvenlafaxine (NNDDV). Drugs and metabolites were extracted via protein precipitation and quantified using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The multiplexed assay was validated in accordance with regulatory recommendations, and evaluated in remnant plasma samples from persons prescribed venlafaxine. RESULTS: The analytical measuring range for venlafaxine and all four metabolites was 5-800 ng/mL. Standard curves were generated via weighted quadratic (NNDDV) or linear (VEN, ODV, NDV, NODDV) regression of calibrators. Inter-assay imprecision was between 1.9-9.3% for all levels of all analytes. Minor matrix effects were observed, and both recovery efficiency and process efficiency were >96% for all analytes. All other assay validation assessments met acceptance criteria. Drug concentrations measured from remnant plasma specimens obtained from patients with current venlafaxine prescriptions (37.5-450 mg/day) yielded NDDV, NDV, and NODDV metabolite concentrations in 6/21, 14/21, and 20/21 samples, respectively. The ratio of active to inactive analytes ranged from 0.74 to 14.5, with a median of 6.39. CONCLUSIONS: An efficient and accurate LC-MS/MS method was developed and validated for the quantification of VEN, ODV, and all three inactive metabolites in plasma. The assay met all acceptance criteria, and may be used in future studies of the pharmacokinetics of these drugs.


Asunto(s)
Ciclohexanoles , Espectrometría de Masas en Tándem , Humanos , Clorhidrato de Venlafaxina , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Ciclohexanoles/química , Ciclohexanoles/farmacocinética , Succinato de Desvenlafaxina , Inhibidores Selectivos de la Recaptación de Serotonina
2.
Sci Rep ; 12(1): 9322, 2022 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-35661132

RESUMEN

Preclinical pharmacokinetic (PK) studies in animal models during the formulation development phase give preliminary evidence and near clear picture of the PK behavior of drug and/or its dosage forms before clinical studies on humans and help in the tailoring of the dosage form according to the expected and requisite clinical behavior. The present work reports a first of its kind preclinical PK study on extended-release (ER) solid oral dosage forms of venlafaxine (VEN) in New Zealand White rabbits. The VEN is a highly prescribed and one of the safest and most effective therapeutic agents used in the treatment of different types of depression disorders worldwide. The multiple-reaction monitoring (MRM) LC-MS/MS method developed for this purpose demonstrated enough reliability in simultaneously quantitating VEN and its equipotent metabolite O-desmethylvenlafaxine (ODV) in rabbit plasma. The method described uses solid-phase extraction for sample preparation followed by an ultrafast LC-MS/MS analysis. The chromatographic separation was achieved isocratically with a predominantly polar mobile phase by employing RPLC. The triple quadrupole LC/MS/MS system operated in MRM mode used an ESI probe as an ion source in positive polarity. The validation results are within the permissible limits of US FDA recommendations and acceptance criteria for bioanalytical method validation.


Asunto(s)
Ciclohexanoles , Espectrometría de Masas en Tándem , Animales , Cromatografía Liquida/métodos , Ciclohexanoles/química , Conejos , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem/métodos , Clorhidrato de Venlafaxina
3.
Mar Drugs ; 20(3)2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35323483

RESUMEN

We recently demonstrated the monthly variation and antioxidant activity of mycosporine-like amino acids (MAAs) from red alga dulse in Japan. The antioxidant activity of MAAs in acidic conditions was low compared to that in neutral and alkali conditions, but we found strong antioxidant activity from the heated crude MAA fraction in acidic conditions. In this study, we identified and characterized the key compounds involved in the antioxidant activity of this fraction. We first isolated two MAAs, palythine, and porphyra-334, from the fraction and evaluated the activities of the two MAAs when heated. MAAs possess absorption maxima at around 330 nm, while the heated MAAs lost this absorption. The heated MAAs showed a high ABTS radical scavenging activity at pH 5.8-8.0. We then determined the structure of heated palythine via ESI-MS and NMR analyses and speculated about the putative antioxidant mechanism. Finally, a suitable production condition of the heated compounds was determined at 120 °C for 30 min at pH 8.0. We revealed compounds from red algae with antioxidant activities at a wide range of pH values, and this information will be useful for the functional processing of food.


Asunto(s)
Antioxidantes/química , Ciclohexanoles/química , Ciclohexanonas/química , Glicina/análogos & derivados , Rhodophyta/química , Benzotiazoles/química , Compuestos de Bifenilo/química , Glicina/química , Calor , Concentración de Iones de Hidrógeno , Japón , Espectroscopía de Resonancia Magnética , Estructura Molecular , Picratos/química , Espectrometría de Masa por Ionización de Electrospray , Ácidos Sulfónicos/química
4.
Org Biomol Chem ; 20(4): 877-886, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-35015006

RESUMEN

Exo-ß-mannosidases are a broad class of stereochemically retaining hydrolases that are essential for the breakdown of complex carbohydrate substrates found in all kingdoms of life. Yet the detection of exo-ß-mannosidases in complex biological samples remains challenging, necessitating the development of new methodologies. Cyclophellitol and its analogues selectively label the catalytic nucleophiles of retaining glycoside hydrolases, making them valuable tool compounds. Furthermore, cyclophellitol can be readily redesigned to enable the incorporation of a detection tag, generating activity-based probes (ABPs) that can be used to detect and identify specific glycosidases in complex biological samples. Towards the development of ABPs for exo-ß-mannosidases, we present a concise synthesis of ß-manno-configured cyclophellitol, cyclophellitol aziridine, and N-alkyl cyclophellitol aziridines. We show that these probes covalently label exo-ß-mannosidases from GH families 2, 5, and 164. Structural studies of the resulting complexes support a canonical mechanism-based mode of action in which the active site nucleophile attacks the pseudoanomeric centre to form a stable ester linkage, mimicking the glycosyl enzyme intermediate. Furthermore, we demonstrate activity-based protein profiling using an N-alkyl aziridine derivative by specifically labelling MANBA in mouse kidney tissue. Together, these results show that synthetic manno-configured cyclophellitol analogues hold promise for detecting exo-ß-mannosidases in biological and biomedical research.


Asunto(s)
Ciclohexanoles/química , Sondas Moleculares/química , beta-Manosidasa/análisis , Ciclohexanoles/síntesis química , Conformación Molecular , Sondas Moleculares/síntesis química , beta-Manosidasa/metabolismo
5.
J Sci Food Agric ; 102(2): 801-812, 2022 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-34223643

RESUMEN

BACKGROUND: Sunscald is a physiological disorder that occurs in many horticultural products when exposed to excessive solar radiation and high temperatures. Traditionally, sunscald is controlled using physical barriers that reflect radiation, however this practice is not always efficient. A possible alternative would be the use of chemical barriers, such as mycosporine-like amino acids (MAAs), which protect aquatic organisms against ultraviolet (UV) radiation. Thus, this study aimed to develop a lipid-based emulsion containing MAAs for using in the preharvest of horticultural products. RESULTS: Emulsions were developed using 10% (w/v) of corn oil (CO) and soybean oil (SO), carnauba wax (CW), and beeswax (BW) as lipid bases (LBs). The emulsion containing CW and ammonium hydroxide was the most stable, resembling commercial wax. Therefore, this formulation was used as the basis for the incorporation of the commercial product Helioguard™ 365, a source of MAA, in concentrations of 0%, 1%, 2%, and 4% (v/v). The MAA incorporation resulted in little modifications in the stability of the emulsion, providing an increase in the absorbance with peaks in the UV-B ranging from 280 to 300 nm. CONCLUSION: The lipid-base emulsion containing MAAs could be used as a chemical barrier to control sunscald in horticultural products. © 2021 Society of Chemical Industry.


Asunto(s)
Aminoácidos/química , Aminoácidos/farmacología , Ciclohexanoles/química , Frutas/efectos de la radiación , Sustancias Protectoras/farmacología , Verduras/efectos de la radiación , Ciclohexanoles/farmacología , Emulsiones/química , Emulsiones/farmacología , Sustancias Protectoras/química , Protectores contra Radiación , Rayos Ultravioleta
6.
Arch Pharm (Weinheim) ; 355(2): e2100362, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34738656

RESUMEN

Two independent chiral pool syntheses of both enantiomers of the TRPML inhibitor, trans-ML-SI3, were developed, starting from commercially available (1S,2R)- and (1R,2S)-configured cis-2-aminocyclohexanols. Both routes lead to the target compounds in excellent enantiomeric purity and good overall yields. For the most attractive (-)-trans-enantiomer, the R,R-configuration was identified by these unambiguous syntheses, and the results were confirmed by single-crystal X-ray structure analysis. These effective synthetic approaches further allow flexible variation of prominent residues in ML-SI3 for future in-depth analysis of structure-activity relationships as both the piperazine and the N-sulfonyl residues are introduced into the molecule at late stages of the synthesis.


Asunto(s)
Ciclohexanoles/farmacología , Canales de Potencial de Receptor Transitorio/antagonistas & inhibidores , Ciclohexanoles/síntesis química , Ciclohexanoles/química , Estereoisomerismo , Relación Estructura-Actividad
7.
Chembiochem ; 22(21): 3090-3098, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34459538

RESUMEN

Glucocerebrosidase (GBA), a lysosomal retaining ß-d-glucosidase, has recently been shown to hydrolyze ß-d-xylosides and to transxylosylate cholesterol. Genetic defects in GBA cause the lysosomal storage disorder Gaucher disease (GD), and also constitute a risk factor for developing Parkinson's disease. GBA and other retaining glycosidases can be selectively visualized by activity-based protein profiling (ABPP) using fluorescent probes composed of a cyclophellitol scaffold having a configuration tailored to the targeted glycosidase family. GBA processes ß-d-xylosides in addition to ß-d-glucosides, this in contrast to the other two mammalian cellular retaining ß-d-glucosidases, GBA2 and GBA3. Here we show that the xylopyranose preference also holds up for covalent inhibitors: xylose-configured cyclophellitol and cyclophellitol aziridines selectively react with GBA over GBA2 and GBA3 in vitro and in vivo, and that the xylose-configured cyclophellitol is more potent and more selective for GBA than the classical GBA inhibitor, conduritol B-epoxide (CBE). Both xylose-configured cyclophellitol and cyclophellitol aziridine cause accumulation of glucosylsphingosine in zebrafish embryo, a characteristic hallmark of GD, and we conclude that these compounds are well suited for creating such chemically induced GD models.


Asunto(s)
Ciclohexanoles/farmacología , Inhibidores Enzimáticos/farmacología , Glucosilceramidasa/antagonistas & inhibidores , Xilosa/farmacología , Animales , Células Cultivadas , Ciclohexanoles/química , Inhibidores Enzimáticos/química , Glucosilceramidasa/genética , Glucosilceramidasa/metabolismo , Células HEK293 , Humanos , Conformación Molecular , Xilosa/química , Pez Cebra
8.
J Photochem Photobiol B ; 223: 112296, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34450363

RESUMEN

Mycosporine-like amino acids (MAAs) are promising natural antioxidative compounds with cosmetic applications for the prevention of skin aging. In this study, we evaluated the protective effects of natural resources-derived MAA-containing emulsions on mouse ear tissue exposed to UV irradiation. DBA/2CrSlc male mice were irradiated by UV light at 120 mJ/cm2/day for 9 days. MAA-containing emulsions were prepared using mycosporine-2-glycine (M2G), shinorine (SHI), or porphyra-334 (P334) and applied to mice ears at a dose of 50 mg/ear/day. After that, collected ear skin tissues were subjected to the observation of melanocytes, investigation for antioxidative stress markers, and measurement of advanced glycation-end products (AGEs). In addition, the antiglycative effects of MAAs were investigated in vitro. MAA-containing emulsions prepared in this study upregulated the activities of total superoxide dismutase (SOD) and catalase (CAT) in mouse ear tissue exposed to UV irradiation. Increased accumulation of copper/zinc (Cu/Zn) -SOD and/or CAT was also found in mouse ear tissue on which M2G- or P334-containing emulsion had been applied. Furthermore, P334 exhibited an antiglycative effect on elastin in vitro. Although MAA-containing emulsions have antioxidative effects as well as in vitro antiglycation, a protective effect by the accumulation of AGEs in mice ears exposed to UV was not observed. Thus, application of MAA-containing emulsions stimulated or protected the expression of antioxidant-associated proteins, thereby leading to upregulation of antioxidative activities in mouse ear skin samples tissues under UV irradiation. Additional optimization of MAA-containing emulsions, including composition, process, and dosage should be considered for further improvement of efficacy.


Asunto(s)
Antioxidantes/farmacología , Emulsiones/química , Piel/efectos de los fármacos , Rayos Ultravioleta , Animales , Antioxidantes/química , Catalasa/metabolismo , Ciclohexanoles/química , Ciclohexanoles/farmacología , Ciclohexanonas/química , Ciclohexanonas/farmacología , Ciclohexilaminas/química , Ciclohexilaminas/farmacología , Glicina/análogos & derivados , Glicina/química , Glicina/farmacología , Glicosilación/efectos de los fármacos , Glicosilación/efectos de la radiación , Masculino , Ratones , Ratones Endogámicos DBA , Piel/efectos de la radiación , Superóxido Dismutasa/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/efectos de la radiación
9.
Angew Chem Int Ed Engl ; 60(11): 5754-5758, 2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33528085

RESUMEN

The recent discovery of zinc-dependent retaining glycoside hydrolases (GHs), with active sites built around a Zn(Cys)3 (Glu) coordination complex, has presented unresolved mechanistic questions. In particular, the proposed mechanism, depending on a Zn-coordinated cysteine nucleophile and passing through a thioglycosyl enzyme intermediate, remains controversial. This is primarily due to the expected stability of the intermediate C-S bond. To facilitate the study of this atypical mechanism, we report the synthesis of a cyclophellitol-derived ß-l-arabinofuranosidase inhibitor, hypothesised to react with the catalytic nucleophile to form a non-hydrolysable adduct analogous to the mechanistic covalent intermediate. This ß-l-arabinofuranosidase inhibitor reacts exclusively with the proposed cysteine thiol catalytic nucleophiles of representatives of GH families 127 and 146. X-ray crystal structures determined for the resulting adducts enable MD and QM/MM simulations, which provide insight into the mechanism of thioglycosyl enzyme intermediate breakdown. Leveraging the unique chemistry of cyclophellitol derivatives, the structures and simulations presented here support the assignment of a zinc-coordinated cysteine as the catalytic nucleophile and illuminate the finely tuned energetics of this remarkable metalloenzyme clan.


Asunto(s)
Ciclohexanoles/metabolismo , Cisteína/metabolismo , Inhibidores Enzimáticos/metabolismo , Glicósido Hidrolasas/metabolismo , Biocatálisis , Cristalografía por Rayos X , Ciclohexanoles/química , Ciclohexanoles/farmacología , Cisteína/química , Teoría Funcional de la Densidad , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Glicósido Hidrolasas/antagonistas & inhibidores , Glicósido Hidrolasas/química , Simulación de Dinámica Molecular , Estructura Molecular
10.
Food Chem Toxicol ; 149 Suppl 1: 112047, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33571610

RESUMEN

The existing information supports the use of this material as described in this safety assessment. Cyclohexanol was evaluated for genotoxicity, repeated dose toxicity, reproductive toxicity, local respiratory toxicity, phototoxicity/photoallergenicity, skin sensitization, and environmental safety. Data show that cyclohexanol is not genotoxic. Data on cyclohexanol provide a calculated margin of exposure (MOE) >100 for the repeated dose toxicity and reproductive toxicity endpoints. Data show that there are no safety concerns for cyclohexanol for skin sensitization under the current declared levels of use. The phototoxicity/photoallergenicity endpoints were evaluated based on ultraviolet (UV) spectra; cyclohexanol is not expected to be phototoxic/photoallergenic. The local respiratory toxicity endpoint was evaluated using the threshold of toxicological concern (TTC) for a Cramer Class I material, and the exposure to cyclohexanol is below the TTC (1.4 mg/day). The environmental endpoints were evaluated; cyclohexanol was found not to be persistent, bioaccumulative, and toxic (PBT) as per the International Fragrance Association (IFRA) Environmental Standards, and its risk quotients, based on its current volume of use in Europe and North America (i.e., Predicted Environmental Concentration/Predicted No Effect Concentration [PEC/PNEC]), are <1.


Asunto(s)
Ciclohexanoles/toxicidad , Odorantes , Animales , Ciclohexanoles/química , Relación Dosis-Respuesta a Droga , Humanos , Relación Estructura-Actividad Cuantitativa , Reproducción/efectos de los fármacos , Medición de Riesgo , Pruebas de Toxicidad
11.
J Comput Aided Mol Des ; 35(1): 95-104, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33037548

RESUMEN

We investigate the binding of native ß-cyclodextrin (ß-CD) and eight novel ß-CD derivatives with two different guest compounds, using isothermal calorimetry and 2D NOESY NMR. In all cases, the stoichiometry is 1:1 and binding is exothermic. Overall, modifications at the 3' position of ß-CD, which is at the secondary face, weaken binding by several kJ/mol relative to native ß-CD, while modifications at the 6' position (primary face) maintain or somewhat reduce the binding affinity. The variations in binding enthalpy are larger than the variations in binding free energy, so entropy-enthalpy compensation is observed. Characterization of the bound conformations with NOESY NMR shows that the polar groups of the guests may be situated at either face, depending on the host molecule, and, in some cases, both orientations are populated. The present results were used in the SAMPL7 blinded prediction challenge whose results are detailed in the same special issue of JCAMD.


Asunto(s)
Ciclodextrinas/metabolismo , Ciclohexanoles/metabolismo , Rimantadina/metabolismo , Termodinámica , beta-Ciclodextrinas/metabolismo , Ciclodextrinas/química , Ciclohexanoles/química , Entropía , Estructura Molecular , Rimantadina/química , beta-Ciclodextrinas/química
12.
Biomed Chromatogr ; 35(1): e4874, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32367587

RESUMEN

Venlafaxine (VFX) is a serotonin and norepinephrine reuptake inhibitor chiral drug used in therapy as an antidepressant in the form of a racemate consisting of R- and S-VFX. The two enantiomers of VFX exhibit different pharmacological activities: R-VFX inhibits both norepinephrine and serotonin synaptic reuptake, whereas S-VFX inhibits only the serotonin one. R- and S-VFX are metabolized in the liver to the respective R- and S-O-desmethylvenlafaxine (ODVFX), R- and S-N-desmethylvenlafaxine (NDVFX), and R- and S-N,O-didesmethylvenlafaxine (NODVFX). The pharmacological profile of ODVFX is close to that of VFX, whereas the other two chiral metabolites (NDVFX and NODVFX) have lower affinity for the receptor sites. The pharmacokinetics of the VFX enantiomers appear stereoselective, including the metabolism process. In the past 20 years, several studies describing the enantioselective analysis of R- and S-VFX in pharmaceutical formulations and its chiral metabolites in biological matrices were published. These methods encompass liquid chromatography coupled with UV detection, mass spectrometry, or tandem mass spectrometry, and capillary electrophoresis. This paper reviews the published methods used for the determination of the individual enantiomers of VFX and its chiral metabolites in different matrices.


Asunto(s)
Succinato de Desvenlafaxina , Clorhidrato de Venlafaxina , Antidepresivos , Cromatografía Liquida , Ciclohexanoles/análisis , Ciclohexanoles/química , Ciclohexanoles/aislamiento & purificación , Ciclohexanoles/farmacocinética , Succinato de Desvenlafaxina/análisis , Succinato de Desvenlafaxina/química , Succinato de Desvenlafaxina/aislamiento & purificación , Succinato de Desvenlafaxina/farmacocinética , Electroforesis Capilar , Humanos , Estereoisomerismo , Espectrometría de Masas en Tándem , Clorhidrato de Venlafaxina/análisis , Clorhidrato de Venlafaxina/química , Clorhidrato de Venlafaxina/aislamiento & purificación , Clorhidrato de Venlafaxina/farmacocinética
13.
Molecules ; 25(24)2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33371407

RESUMEN

The identification of aroma composition and key odorants contributing to aroma characteristics of white tea is urgently needed, owing to white tea's charming flavors and significant health benefits. In this study, a total of 238 volatile components were identified in the three subtypes of white teas using headspace solid-phase microextraction (HS-SPME) combined with comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC × GC-TOFMS). The multivariate statistical analysis demonstrated that the contents of 103 volatile compounds showed extremely significant differences, of which 44 compounds presented higher contents in Baihaoyinzhen and Baimudan, while the other 59 compounds exhibited higher contents in Shoumei. The sensory evaluation experiment carried out by gas chromatography-olfactometry/mass spectrometry (GC-O/MS) revealed 44 aroma-active compounds, of which 25 compounds were identified, including 9 alcohols, 6 aldehydes, 5 ketones, and 5 other compounds. These odorants mostly presented green, fresh, floral, fruity, or sweet odors. Multivariate analyses of chemical characterization and sensory evaluation results showed that high proportions of alcohols and aldehydes form the basis of green and fresh aroma characteristic of white teas, and phenylethyl alcohol, γ-Nonalactone, trans-ß-ionone, trans-linalool oxide (furanoid), α-ionone, and cis-3-hexenyl butyrate were considered as the key odorants accounting for the different aroma characteristics of the three subtypes of white tea. The results will contribute to in-depth understand chemical and sensory markers associated with different subtypes of white tea, and provide a solid foundation for tea aroma quality control and improvement.


Asunto(s)
Aromatizantes/química , Odorantes/análisis , Té/química , Monoterpenos Acíclicos/química , Aldehídos/química , Ciclohexanoles/química , Frutas/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Norisoprenoides/química , Microextracción en Fase Sólida/métodos , Compuestos de Tritilo/química , Compuestos Orgánicos Volátiles/química
14.
J Photochem Photobiol B ; 213: 112078, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33221626

RESUMEN

Gadusols are efficient nature UV sunscreens with antioxidant capacity. The kinetics of the quenching reactions of singlet oxygen O2(1∆g) by gadusol species was evaluated in aqueous solution as well as in the presence of direct charged micelles. Time-resolved phosphorescence detection of O2(1∆g) indicated that gadusolate, the main species under biological pH, is a more efficient quencher than the enol form with a rate constant of ca. 1.3 × 108 L mol-1 s-1. The deactivation proceeds via a collisional mechanism with clear dominance of chemical pathways, according to the rates of gadusol and oxygen consumptions, and typical photooxidation quantum yields of ca. 7%. The relative contributions of the chemical and physical quenching steps were not affected by the presence of anionic or cationic micelles emulating simple pseudo-biological environments. The products of the photo-oxidative quenching support a type II mechanism initiated by the addition of O2(1∆g) to the C-C double bond of gadusolate. These results point to the relevance of considering the role of sacrifice antioxidant along with the UV-screening function for gadusol, particularly in the context of potential biotechnological applications of this natural molecule.


Asunto(s)
Antioxidantes/química , Ciclohexanoles/química , Colorantes Fluorescentes/química , Oxígeno Singlete/química , Cinética , Espectrometría de Masas , Micelas , Modelos Químicos , Oxidación-Reducción , Oxígeno/química , Fotólisis/efectos de la radiación , Espectrometría de Fluorescencia , Rayos Ultravioleta
15.
Mar Drugs ; 18(10)2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-33008002

RESUMEN

Mycosporine-like amino acids (MAAs) are the ultraviolet (UV)-absorbable compounds, which are naturally produced by cyanobacteria and algae. Not only these algae but also marine organisms utilize MAAs to protect their DNA from UV-induced damage. On the other hand, the content of MAAs in algae was changed by the environmental condition and season. In addition to the UV-protected function, the antioxidant capacity of MAAs can apply to the cosmetic sunscreen materials and anti-cancer for human health. In this study, we developed the efficient extraction method of MAAs from red alga dulse in Usujiri (Hokkaido, Japan) and investigated the monthly variation. We also evaluated the antioxidant capacity. We employed the successive extraction method of water and then methanol extraction. Spectrophotometric and HPLC analyses revealed that the yield of MAAs by 6 h water extraction was the highest among the tested conditions, and the content of MAAs in the sample of February was the most (6.930 µmol g-1 dry weight) among the sample from January to May in 2019. Antioxidant capacity of MAAs such as crude MAAs, the purified palythine and porphyra-334 were determined by 2,2'-azinobis(3-ethylbenzothiazoline 6-sulfonic acid) (ABTS) radical scavenging and ferrous reducing power assays in various pH conditions, showing that the highest scavenging activity and reducing power were found at alkaline condition (pH 8.0).


Asunto(s)
Aminoácidos/química , Aminoácidos/farmacología , Antioxidantes/química , Fraccionamiento Químico/métodos , Rhodophyta/química , Benzotiazoles/química , Ciclohexanoles/química , Ciclohexanoles/farmacología , Concentración de Iones de Hidrógeno , Japón , Océano Pacífico , Ácidos Sulfónicos/química
16.
J Am Chem Soc ; 142(30): 13021-13029, 2020 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-32605368

RESUMEN

Golgi mannosidase II (GMII) catalyzes the sequential hydrolysis of two mannosyl residues from GlcNAcMan5GlcNAc2 to produce GlcNAcMan3GlcNAc2, the precursor for all complex N-glycans, including the branched N-glycans associated with cancer. Inhibitors of GMII are potential cancer therapeutics, but their usefulness is limited by off-target effects, which produce α-mannosidosis-like symptoms. Despite many structural and mechanistic studies of GMII, we still lack a potent and selective inhibitor of this enzyme. Here, we synthesized manno-epi-cyclophellitol epoxide and aziridines and demonstrate their covalent modification and time-dependent inhibition of GMII. Application of fluorescent manno-epi-cyclophellitol aziridine derivatives enabled activity-based protein profiling of α-mannosidases from both human cell lysate and mouse tissue extracts. Synthesized probes also facilitated a fluorescence polarization-based screen for dGMII inhibitors. We identified seven previously unknown inhibitors of GMII from a library of over 350 iminosugars and investigated their binding modalities through X-ray crystallography. Our results reveal previously unobserved inhibitor binding modes and promising scaffolds for the generation of selective GMII inhibitors.


Asunto(s)
Ciclohexanoles/farmacología , Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Manosidasas/antagonistas & inhibidores , Ciclohexanoles/síntesis química , Ciclohexanoles/química , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Manosidasas/metabolismo , Estructura Molecular
17.
Rapid Commun Mass Spectrom ; 34 Suppl 3: e8634, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31677357

RESUMEN

RATIONALE: Mycosporine-like amino acids (MAAs) are UV-absorbing compounds produced by fungi, algae, lichens, and cyanobacteria when exposed to UV radiation. These compounds have photoprotective and antioxidant functions and have been widely studied for possible use in sunscreens and anti-aging products. This study aims to identify MAA-producing cyanobacteria with potential application in cosmetics. METHODS: A method for the identification of MAAs was developed using ultrahigh-performance liquid chromatography with diode array detection coupled to quadrupole time-of-flight mass spectrometry (UHPLC-DAD/QTOFMS). Chromatographic separation was carried out using a Synergi 4 µ Hydro-RP 80A column (150 × 2,0 mm) at 30°C with 0.1% formic acid aqueous solution + 2 mM ammonium formate and acetonitrile/water (8:2) + 0.1% formic acid as a mobile phase. RESULTS: Out of the 69 cyanobacteria studied, 26 strains (37%) synthesized MAAs. Nine different MAAs were identified using UHPLC-DAD/QTOFMS. Iminomycosporines were the major group detected (7 in 9 MAAs). In terms of abundance, the most representative genera for MAA production were heterocyte-forming groups. Oscilatoria sp. CMMA 1600, of homocyte type, produced the greatest diversity of MAAs. CONCLUSIONS: The UHPLC-DAD/QTOFMS method is a powerful tool for identification and screening of MAAs in cyanobacterial strains as well as in other organisms such as dinoflagellates, macroalgae, and microalgae. The different cyanobacterial genera isolated from diverse Brazilian biomes and environments are prolific sources of MAAs.


Asunto(s)
Aminoácidos/análisis , Aminoácidos/química , Cromatografía Líquida de Alta Presión/métodos , Cianobacterias/química , Espectrometría de Masas/métodos , Brasil , Cianobacterias/metabolismo , Ciclohexanoles/análisis , Ciclohexanoles/química , Ciclohexanonas/análisis , Ciclohexanonas/química , Ciclohexilaminas/análisis , Ciclohexilaminas/química , Glicina/análogos & derivados , Glicina/análisis , Glicina/química
18.
ACS Chem Biol ; 15(1): 217-225, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31774274

RESUMEN

It is increasingly clear that interindividual variability in human gut microbial composition contributes to differential drug responses. For example, gastrointestinal (GI) toxicity is not observed in all patients treated with the anticancer drug irinotecan, and it has been suggested that this variability is a result of differences in the types and levels of gut bacterial ß-glucuronidases (GUSs). GUS enzymes promote drug toxicity by hydrolyzing the inactive drug-glucuronide conjugate back to the active drug, which damages the GI epithelium. Proteomics-based identification of the exact GUS enzymes responsible for drug reactivation from the complexity of the human microbiota has not been accomplished, however. Here, we discover the specific bacterial GUS enzymes that generate SN-38, the active and toxic metabolite of irinotecan, from human fecal samples using a unique activity-based protein profiling (ABPP) platform. We identify and quantify gut bacterial GUS enzymes from human feces with an ABPP-enabled proteomics pipeline and then integrate this information with ex vivo kinetics to pinpoint the specific GUS enzymes responsible for SN-38 reactivation. Furthermore, the same approach also reveals the molecular basis for differential gut bacterial GUS inhibition observed between human fecal samples. Taken together, this work provides an unprecedented technical and bioinformatics pipeline to discover the microbial enzymes responsible for specific reactions from the complexity of human feces. Identifying such microbial enzymes may lead to precision biomarkers and novel drug targets to advance the promise of personalized medicine.


Asunto(s)
Proteínas Bacterianas/metabolismo , Ciclohexanoles/química , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/metabolismo , Inhibidores Enzimáticos/química , Microbioma Gastrointestinal/fisiología , Glucuronidasa/metabolismo , Irinotecán/química , Animales , Biomarcadores/metabolismo , Biología Computacional , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/microbiología , Inhibidores Enzimáticos/metabolismo , Heces/química , Femenino , Glucurónidos/metabolismo , Humanos , Hidrólisis , Irinotecán/metabolismo , Cinética , Masculino , Metaboloma , Ratones , Modelos Moleculares , Medicina de Precisión , Unión Proteica , Conformación Proteica
19.
Molecules ; 24(24)2019 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-31817626

RESUMEN

The unpleasant stale note is a negative factor hindering the consumption of instant ripened Pu-erh tea products. This study focused on investigating volatile chemicals in instant ripened Pu-erh tea that could mask the stale note via sensory evaluation, gas chromatography-mass spectrometry (GC-MS), and gas chromatography-olfactometry (GC-O) analyses. GC-MS and GC-O analyses showed that linalool, linalool oxides, trans-ß-ionone, benzeneacetaldehyde, and methoxybenzenes were the major aroma contributors to the simultaneous distillation and extraction (SDE) extract of instant ripened Pu-erh tea. Sensory evaluation showed that the SDE extract had a strong stale note, which was due to methoxybenzenes. By investigating suppressive interaction among flavour components, the stale note from methoxybenzenes was shown to have reciprocal masking interactions with sweet, floral, and green notes. Moreover, the validation experiment showed that the addition of 40 µg/mL of trans-ß-ionone in the instant ripened Pu-erh tea completely masked the stale note and improved the overall aromatic acceptance. These results elucidate the volatile chemicals that could mask the stale note of instant ripened Pu-erh tea products, which might help to develop high quality products made from instant ripened Pu-erh tea.


Asunto(s)
Extractos Vegetales/química , Té/química , Monoterpenos Acíclicos/química , Anisoles/química , Ciclohexanoles/química , Cromatografía de Gases y Espectrometría de Masas , Compuestos de Tritilo/química
20.
Sci Prog ; 102(4): 287-303, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31818205

RESUMEN

Mycosporine-like amino acids have long been known as a natural form of photoprotection for fungi and cyanobacteria. This review will highlight the key time-resolved experimental and theoretical techniques unravelling their photochemistry and photophysics, and directly link this to their use in commercial skin-care products, namely as sunscreen filters. Three case studies have been selected, each having aided advancement in this burgeoning field of research. We discuss these studies in the context of photoprotection and conclude by evaluating the necessary future steps towards translating the photochemistry and photophysics insight of these nature derived sunscreen filters to commercial application.


Asunto(s)
Cianobacterias/metabolismo , Ciclohexanoles/metabolismo , Hongos/metabolismo , Luz , Cianobacterias/química , Ciclohexanoles/química , Hongos/química , Protectores Solares/química , Protectores Solares/metabolismo , Protectores Solares/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...